
5. Painting in Swing
To write output directly to the surface of a component, you will use one or more drawing

methods defined by the AWT, such as drawLine() or drawRect().

5.1 Painting Fundamentals

The AWT class Component defines a method called paint() that is used to draw output

directly to the surface of a component. For the most part, paint() is not called by your

program. Rather, paint() is called by the run-time system whenever a component must be

rendered. This situation can occur for several reasons. For example, the window in which

the component is displayed can be overwritten by another window and then uncovered. Or,

the window might be minimized and then restored. The paint() method is also called when

a program begins running. When writing AWT-based code, an application will override

paint() when it needs to write output directly to the surface of the component.

Because JComponent inherits Component, all Swing’s lightweight components inherit the

paint() method. However, you will not override it to paint directly to the surface of a

component. The reason is that Swing uses a bit more sophisticated approach to painting

that involves three distinct methods:

1. paintComponent(),

2. paintBorder(), and

3. paintChildren().

 These methods paint the indicated portion of a component and divide the painting process

into its three distinct, logical actions. In a lightweight component, the original AWT

method paint() simply executes calls to these methods, in the order just shown.

To paint to the surface of a Swing component, you will create a subclass of the component

and then override its paintComponent() method. This is the method that paints the interior

of the component. You will not normally override the other two painting methods. When

overriding paintComponent(), the first thing you must do is call super.paintComponent(),

so that the superclass portion of the painting process takes place. (The only time this is not

required is when you are taking complete, manual control over how a component is

displayed.) After that, write the output that you want to display. The paintComponent()

method is shown here:

protected void paintComponent(Graphics g)

To cause a component to be painted under program control, call repaint().The repaint()

method is defined by Component. Calling it causes the system to call paint() as soon as it

ispossible to do so. Because painting is a time-consuming operation, thismechanism allows

the run-time system to defer painting momentarily until some higher-priority task has

completed. In Swing the call to paint() results in a call to paintComponent(). Therefore,

to output to the surface of a component, your program will store the output until

paintComponent() is called.

5.1 Compute the Paintable Area
When drawing to the surface of a component, you must restrict your output to the area that

is inside the border. Although Swing automatically clips any output that will exceed the

boundaries of a component, it is still possible to paint into the border, which will then get

overwritten when the border is drawn.

To avoid this, you must compute the paintable area of the component.

This is the area defined by the current size of the component minus the space used by the

border. Therefore, before you paint to a component, you must obtain the width of the border

and then adjust your drawing accordingly. To obtain the border width, call getInsets():-

Insets getInsets()

This method is defined by Container and overridden by JComponent. It returns an Insets

object that contains the dimensions of the border. The inset values can be obtained by using

these fields:

 int top;

 int bottom;

 int left;

 int right;

These values are then used to compute the drawing area given the width and the height of

the component. You can obtain the width and height of the component by calling getWidth(

) and getHeight() on the component. They are shown here:

 int getWidth()

 int getHeight()

By subtracting the value of the insets, you can compute the usable width and height of the

component.

5.2 A Paint Example

It creates a class called PaintPanel that extends JPanel. The program then uses an object of

that class to display lines whose endpoints have

been generated randomly.

Explanation:-

The PaintPanel class extends JPanel.

To handle painting, PaintPanel overrides the paintComponent() method. This enables

PaintPanel to write directly to the surface of the component when painting takes place. The

size of the panel is not specified because the program uses the default border layout and

the panel is added to the center.

This results in the panel being sized to fill the center. If you change the size of the window,

the size of the panel will be adjusted accordingly.

The constructor also specifies a 5-pixel wide, red border. This is accomplished by setting

the border by using the setBorder() method:

void setBorder(Border border)

Border is the Swing interface that encapsulates a border.

You can obtain a border by calling one of the factory methods defined by the BorderFactory

class. The one used in the program is createLineBorder(), which creates a simple line

border.

static Border createLineBorder(Color clr, int width)

Here, clr specifies the color of the border and width specifies its width in pixels. Inside the

override of paintComponent(), it first calls super.paintComponent(). This is necessary to

ensure that the component is properly drawn. Next, the width and height of the panel are

obtained along with the insets. These values are used to ensure the lines lie within the

drawing area of the panel. The drawing area is the overall width and height of a component

less the border width. The computations are designed to work with differently sized

PaintPanels and borders. To prove this, try changing the size of the window. The lines will

still all lie within the borders of the panel.

The PaintDemo class creates a PaintPanel and then adds the panel to the content pane.

When the application is first displayed, the overridden paintComponent() method is called,

and the lines are drawn. Each time you resize or hide and restore the window, a new set of

lines are drawn. In all cases, the lines fall within the paintable area.

